• 0 Posts
  • 15 Comments
Joined 1 year ago
cake
Cake day: June 10th, 2023

help-circle




  • Resistance is like shocks on a car… push hard to compress and it compresses faster. push less hard (voltage) and it doesn’t move as fast (current). Pull it (negative voltage) and it expands (current flowing the other way). Resistors resist (voltage against) flow (current).

    Capacitors you sorta seem to get: current flowing in one direction through a capacitor builds up voltage the remains after the current stops… like the force in a spring builds up as it compresses and when the motion stops the force is still there.

    What you seem to confuse with resistance is inductance, where the force (voltage) on an air hockey puck makes it speed up (current flow), and when the force stops pushing it it just keeps moving (current keeps flowing).

    The general term for these voltage-current relationships is impedance, because in the general case where voltage or current is oscillating or rapidly switching on and off you get some effects that resemble resistance (voltage pushing back on current or vice versa).

    Final concept is that any time you have something trying to force specific levels of current or voltage on a pin, the “setter” (whatever is doing the forcing, typically referred to as the “source”) has impedance and so does the “getter” (whatever is being forced, referred to as the “load”). If you have a fishing rod and you want the tip to move slowly, you can easily move it where you want it to go, but if you want to shake it fast it won’t move as far (the weight of the tip is like inductance resisting the motion with force/voltage).

    So, a microchip pin might have high resistance to ground but also high capacitance to ground… and a quick pulse of voltage will immediately cause current to flow into the empty capacitor, and if the capacitance is big enough the voltage won’t change much, or will require more time to change. High capacitance has low impedance… it sucks up any available current as the desired change in voltage happens. interestingly, there are two options for making the pin voltage change faster… increase the current level being used by the source (by reducing impedance within the source so it can get out to the pin easier), or reducing the amount of current required to change the pin voltage by raising the impedance to ground inside the chip package (that is, reducing the capacitance inside the chip package).

    When the source impedance is very very large, that is like having the signal generator probe laying on the bench instead of connected to the pin. When the source impedance is large and the internal pin impedance is large, then any stray electric or magnetic fields can push the pin voltage around easily. This is what they call floating… and if the microchip is reacting to those erratic voltage signals then the circuit as a whole will behave erratically as it tries to react to noisy input.

    An output pin usually (but not always) has a lower source impedance than a tri-state input in its high impedance state. If you connect it to a floating input then the input stops floating and follows whatever the source is forcing it to.

    An input pin usually has an input impedance similar to the source impedance of sources connected to it… this generally allows the input to be controlled most quickly. Inputs whose voltage doesn’t change quickly tend to be less useful than ones the do change quickly bandwidth and clock speeds can be faster.

    If you try to connect microchips built with different technologies together (e.g. CMOS vs TTL) then they may not communicate quickly or with minimal wasted power because they have different typical impedances (and voltage levels).





  • Pretty vague question.

    One assumption that “mathy types” like to make is that the slope be negative-proportional to how far the value (not slope) is from the desired target value… and then you get an exponential decay (buzzword). But there are lots of other assumptions one could make… some of which lead to PID control (buzz; very mathy stuff).

    But these days you could use a neural net (buzz; so mathy they don’t usually pretend to understand what the NN “learns”) or fuzzy logic (buzz; which is ideally intuitive but has many surprisingly mathy assumptions) to make the behavior nonlinear and go to the desired result much faster… so really, there are many many possible answers. Maybe you can watch some ELI5 videos about these buzzwords and refine your question?




  • NPR sez Florida law would disallow him voting, but he wasn’t convicted in Florida, so they defer to the law in the state where he was convicted. New York allows felons to vote up until they are imprisoned, which doesn’t seem likely to happen before election day since he is appealing. Skin of teeth again.